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Strict implication and substructural implication

Strict implication arises from prefixing material implication by
a modal necessity operator: 2(ϕ→ ψ).

Important in Lewis’s work on early modern modal logic for
resolving paradoxes of material implication.

Modal logics above S4 have an especially nice strict
implication, corresponding (via Gödel’s translation) to
intuitionistic implication.

Substructural logics generalize intuitionistic logic.

Guiding question: Which substructural logics are logics of
strict implication (over some non-classically based modal
logic)?
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Logics without contraction

Substructural logics dispense with some of the structural rules
arising in the proof theory of classical/intuitionistic logic.

Today: Logics with exchange and weakening, but missing the
contraction rule of the intuitionistic sequent calculus LJ:

Γ, ϕ, ϕ,⇒ Σ

Γ, ϕ,⇒ Σ

Algebraic semantics:

A (bounded, commutative, integral) residuated lattice is an algebra
(A,∧,∨, ·,→, 0, 1) such that

(A,∧,∨, 0, 1) is a bounded lattice.

(A, ·, 1) is a commutative monoid. (· interprets comma)

For all x , y , z ∈ A,

x · y ≤ z ⇐⇒ x ≤ y → z .
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Familiar residuated lattices

Lots of familiar examples:

Heyting algebras (where · is ∧) and Boolean algebras.

MTL-algebras, the algebraic semantics of t-norm based logics,
satisfying (x → y) ∨ (y → x) = 1 (residuated lattices that are
subdirect products of totally ordered ones).

GBL-algebras, satisfying divisibility x(x → y) = x ∧ y .

BL-algebras, the algebraic semantics of Petr Hájek’s basic
fuzzy logic, the intersection of MTL and GBL.

MV-algebras, the algebraic semantics of  Lukasiewicz logic,
BL-algebras that satisfy (x → 0)→ 0 = x .

Gödel algebras, the algebraic semantics of Gödel-Dummett
logic, the intersection of MTL and Heyting algebras.
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Non-classical frames

Definition:

A frame is an ordered triple (X ,≤,A), where

(X ,≤) is a poset.

A = {Ax : x ∈ A} is an indexed family of residuated lattices.

If K is a class of posets, we say that the frame (X ,≤,A) is
K-based or based in K when (X ,≤) ∈ K. Likewise, if V is a class
of residuated lattices, we say that (X ,≤,A) is V-valued or valued
in V when Ax ∈ V for every x ∈ X .

Valuations in intuitionistic frames satisfy persistency: If ϕ is true
at a world x , then ϕ remains true at each y ≥ x . The correct
generalization to non-classical frames is the notion of an antichain
labeling.
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Antichain labelings

Definition:

Let (X ,≤) be a poset, and let {Ax : x ∈ X} be an indexed
collection of residuated lattices sharing a common least element 0
and common greatest element 1. An antichain labeling (or
ac-labeling) is a choice function f ∈

∏
x∈X Ax such that for all

x , y ∈ X ,
x < y =⇒ f (x) = 0 or f (y) = 1.

• 1

• a

• 0

Ax

• 1

• 0

• 1• 1

• a

• 0

Good

• 1

• 0

• 1• 1

• a

• a

Bad
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Antichain labelings as 2-fixed elements

Let (X ,≤) be a poset and {Ax : x ∈ X} is an indexed collection of
residuated lattices sharing a common least element 0 and common
greatest element 1. Set B =

∏
x∈X Ax and define a map

2 : B → B by

2(f )(x) =

{
f (x) if f (y) = 1 for all y > x

0 if there exists y > x with f (y) 6= 1.

Then:

2 is an interior operator on B.

In particular, 22x = 2x ≤ x and 2 preserves ∧ and ·, and
2(x → y)→ (2x → 2y) = 1.

The 2-fixed elements are exactly the ac-labelings.

The image of B under 2 is a residuated lattice B2; all the
operations are from B, except the new implication is
2(x → y), where → is the implication of B. The algebra B2

is called the poset product.
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Thinking about poset products

Poset products were originally introduced by P. Jipsen and. F.
Montagna as a common generalization of direct products and
nested sums (sometimes called ordinal sums).

If (X ,=) is the index poset, then the poset product of
{Ax : x ∈ X} is just the direct product.

If x < y in the poset ({x , y},≤), then the poset product
consists of the nested sum of Ax and Ay (intuitively obtained
by replacing the unit of Ax by Ay ).

Poset products can be thought of as iterating the direct product
and nested sum constructions.
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Toward algebraic models of strict implication

Poset product representations realize residuated lattices as models
of substructural logics of strict implication.

The representations are most useful when the factors Ax have
much lower complexity than the algebras of interest.

We focus on the case with simple factors: Where the only
congruences are the trivial ones.

Theorem (Kowalski-Ono, 2000):

Let A be a simple residuated lattice and let a ∈ A with a 6= 1.
Then there exists n ∈ N such that an = 0.

Simple residuated lattices are in particular multipotent: For
each a there exists n ∈ N such that an+1 = an.

This highlights the role idempotents play in poset products of
simple residuated lattices, i.e. since simple ones have no
idempotents other than 0, 1.
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Some definitions

Definition (idempotent center):

The idempotent center of the residuated lattice A is the set
H(A) = {a ∈ A : a2 = a}.
If H(A) is a (necessarily Heyting) subalgebra of A and for all
i ∈ H(A), a ∈ A we have ia = i ∧ a, we say that it is a central
subalgebra of A and denote it by H(A).

Definition (central filters):

A filter of a residuated lattice A is a subset that is upward
closed and closed under ·.
For each subset S of A, there is a smallest filter containing S
called the filter generated by S .

A filter is called central if it is the filter generated the
idempotent elements it contains.

A value is completely meet irreducible element in the lattice of
filters. 10 / 17



Centered residuated lattices

Representability by poset products of simple residuated lattices
turns out to depend crucially on H(A) fitting inside A ‘nicely’:

Definition:

We say that a residuated lattice A is centered if:

H(A) is a central subalgebra of A.

Every filter of A is central.

A satisfies the square condition: For every i ∈ H(A) and
a ∈ A, there exists j ∈ H(A) such that i ∧ j ≤ a ≤ i ∨ j .

Theorem (F.-Jipsen 2022+):

Every centered residuated lattice embeds into a poset product of
simple residuated lattices, and is therefore isomorphic to an algebra
of antichain labelings.
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The square condition

The square condition: For every i ∈ H(A) and a ∈ A, there exists
j ∈ H(A) such that i ∧ j ≤ a ≤ i ∨ j .

• i ∨ j

•i2 = i • j = j2• a

• i ∧ j
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Sketch of the main theorem

Let (X ,≤) be the poset of completely meet-irreducible
congruences of the centered residuated lattice A.

The quotients A/x for x ∈ X are subdirectly irreducible.

Key lemma: These may be decomposed as a nested sum with
one summand a simple residuated lattices (a Blok-Ferreirim
theorem for centered residuated lattices).

A may be embedded in the poset product of these factors
indexed by the poset of completely meet-irreducible
congruences.
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Varieties and logics

Centered residuated lattices don’t form an especially nice class,
and what we’re interested in for logical purposes are varieties.

Definition:

For each n ∈ N, let Sn denote the subvariety of residuated lattices
axiomatized by:

anb = an ∧ b.

an → bn = (an → bn)2.

a ≤ bn ∨ (bn → an).

Further, for each n ∈ N denote by Cn the subvariety of Sn

axiomatized by

(a→ b)→ (b → a) = b → a.
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Concrete representation theorems

Theorem (Jipsen-Montagna 2010):

For each n ∈ N, the variety generated by poset products of simple
n-potent MV-algebras chains is the variety of n-potent
GBL-algebras.

Theorem (F.-Jipsen 2022+):

Let n ∈ N.

Sn is the variety generated by poset products of simple
n-potent residuated lattices.

Cn is the variety generated by poset products of simple
n-potent MTL-algebras.

15 / 17



Conclusion

This framework gives lots of substructural analogues of
notions from classical modal/intuitionistic logic:

Relational semantics
Sahlqvist theory
Gödel-McKinsey-Tarski type translations

On-going and future work:

Add topological content to what we’ve seen, extending Esakia
duality to the substructural setting.
Go beyond simple factors for more expressive representation
theories.
Develop a substructural Blok-Esakia theory of modal
companions.
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Thank you!

Thank you!
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