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Part I:
Antichain labelings and poset

products
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Intuitionistic Kripke semantics

An intuitionistic Kripke frame is a just a poset (X ,≤).

We think of the elements of X as ‘possible worlds’ or more
prosaically ‘situations’.

The truth/falsity of each proposition ϕ is evaluated at each
world x ∈ X .

Connectives ∧,∨ are evaluated locally at each world, but
instead of the material implication ⊃ we take the strict
implication: ϕ→ ψ is true at x ∈ X if for each y ≥ x , ϕ ⊃ ψ
holds at y .

Persistency is a key condition: If ϕ is true at x ∈ X , then ϕ
remains true at each y ≥ x .

Said differently: The set of points x ∈ X at which ϕ is true is
an up-set of (X ,≤).
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Up-sets and Heyting algebras

The up-sets of any poset satisfies the frame law, and hence
forms a complete Heyting algebra.

In fact, every Heyting algebra embeds in the algebra of
up-sets of its poset of prime filters (sometimes called its
canonical extension/completion).

Different perspective: Swap out each up-set U for its
characteristic functions χU : X → {0, 1} defined by χU(x) = 1
iff x ∈ U. These are just monotone functions from (X ,≤) to
the 2-element Boolean algebra {0, 1}.
Core idea of antichain labelings.

In-line with representation theory throughout algebra (groups
of permutations, matrices, Boolean algebras, etc).
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Generalizing persistency

Motivated by many-valued logics: Might want worlds to
values not just in {0, 1}, but with other intermediate truth
values (example: MV-algebras and  Lukasiewicz logic).

Lots of approaches in the literature, not yet clear what the
‘correct’ way to do this is.

Monotonicity is no longer enough.

Logic and representation theory guide each other: Considering
generalizations of frames leads us to more expressive
representation theories and representation theory helps select
the ‘correct’ generalization of persistency/monotonicity.
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Residuated lattices

Definition:

A (bounded, commutative, integral) residuated lattice is an algebra
(A,∧,∨, ·,→, 0, 1) such that

(A,∧,∨, 0, 1) is a bounded lattice.

(A, ·, 1) is a commutative monoid.

For all x , y , z ∈ A,

x · y ≤ z ⇐⇒ x ≤ y → z .

We will usually write xy for x · y . Residuated lattices give the
equivalent algebraic semantics for extensions of the Full Lambek
calculus (with exchange, weakening, and falsum). We drop
contraction from intuitionistic sequent calculus LJ. The product ·
interprets comma.
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Familiar residuated lattices

Lots of familiar examples:

Heyting algebras (where · is ∧) and Boolean algebras.

MTL-algebras, the algebraic semantics of t-norm based logics,
satisfying (x → y) ∨ (y → x) = 1 (residuated lattices that are
subdirect products of totally ordered ones).

GBL-algebras, satisfying divisibility x(x → y) = x ∧ y .

BL-algebras, the algebraic semantics of Petr Hájek’s basic
fuzzy logic, the intersection of MTL and GBL.

MV-algebras, the algebraic semantics of  Lukasiewicz logic,
BL-algebras that satisfy (x → 0)→ 0 = x .

Gödel algebras, the algebraic semantics of Gödel-Dummett
logic, the intersection of MTL and Heyting algebras.
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Non-classical frames

Most of the results will not be phrased in this language, but we can
make precise the idea of non-classical ‘frames’ we discussed before:

Definition:

A frame is an ordered triple (X ,≤,A), where

(X ,≤) is a poset.

A = {Ax : x ∈ A} is an indexed family of residuated lattices.

If K is a class of posets, we say that the frame (X ,≤,A) is
K-based or based in K when (X ,≤) ∈ K. Likewise, if V is a class
of residuated lattices, we say that (X ,≤,A) is V-valued or valued
in V when Ax ∈ V for every x ∈ X .
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Antichain labelings

Definition:

Let (X ,≤) be a poset, and let {Ax : x ∈ X} be an indexed
collection of residuated lattices sharing a common least element 0
and common greatest element 1. An antichain labeling (or
ac-labeling) is a choice function f ∈

∏
x∈X Ax such that for all

x , y ∈ X ,
x < y =⇒ f (x) = 0 or f (y) = 1.

• 1

• a

• 0

Ax

• 1

• 0

• 1• 1

• a

• 0

Good

• 1

• 0

• 1• 1

• a

• a

Bad
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Poset products

Definition:

Let (X ,≤) be a poset and let {Ax : x ∈ X} is an indexed
collection of residuated lattices sharing a common least element 0
and greatest element 1. Set B = {f ∈

∏
x∈X : f is an ac-labeling}.

We define operations in B as follows. The operations ∧,∨, ·, 0, 1
are defined pointwise, and the operation → is defined by

(f → g)(x) =

{
f (x)→x g(x) if for all y > x , f (y) ≤x g(y)

0 otherwise.

The algebra B with these operation is called the poset product.

Fact: A poset product of a poset-indexed family of residuated
lattices is a residuated lattice.
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Conuclei and conuclear images

If A is a residuated lattice, a map σ : A→ A is a conucleus on A if
for all x , y ∈ A:

σ(x) ≤ x

σ(σ(x)) = σ(x).

x ≤ y implies σ(x) ≤ σ(y)

σ(x)σ(y) ≤ σ(xy)

σ(x)σ(1) = σ(1)σ(x) = σ(x)

If σ is a conucleus on A = (A,∧,∨, ·,→, 0, 1), then

Aσ = (σ[A],∧σ,∨, ·,→σ, 0, σ(1))

is also a residuated lattice, where x ∧σ y = σ(x ∧ y) and
x →σ y = σ(x → y).
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Poset products as conuclear images

Let (X ,≤) be a poset and {Ax : x ∈ X} is an indexed collection of
residuated lattices sharing a common least element 0 and common
greatest element 1. Set B =

∏
x∈X Ax and define a map

2 : B → B by

2(f )(x) =

{
f (x) if f (y) = 1 for all y > x

0 if there exists y > x with f (y) 6= 1.

Then 2 is a conucleus on the direct product. The conuclear image
coincides with the poset product:

B2 =
∏

(X ,≤)

Ax .
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Describing ac-labelings

Antichain labelings admit many convenient equivalent
characterizations:

Lemma:

Let f ∈ B =
∏

x∈X Ax , (X ,≤) a poset, as above. The following
are equivalent.

1 f ∈ B2.

2 2f = f .

3 For all x , y ∈ X with x < y , f (x) = 0 or f (y) = 1.

4 Sf = {x ∈ X : f (x) /∈ {0, 1}} is a (possibly empty) antichain
of (X ,≤), Lf = f −1(0) is a down-set of (X ,≤), and
Uf = f −1(1) is an up-set of (X ,≤).
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Thinking about poset products

Poset products were originally introduced by P. Jipsen and. F.
Montagna as a common generalization of direct products and
nested sums (sometimes called ordinal sums).

If (X ,=) is the index poset, then the poset product of
{Ax : x ∈ X} is just the direct product.

If x < y in the poset ({x , y},≤), then the poset product
consists of the nested sum of Ax and Ay (intuitively obtained
by replacing the unit of Ax by Ay ).

Poset products can be thought of as iterating the direct product
and nested sum constructions.
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Poset product representations

Recall that a GBL-algebra is a residuated lattice that satisfies
divisibility (x(x → y) = x ∧ y). Almost all of the past work on
poset product representations has been directed at GBL-algebras
and BL-algebras (the subvariety generated by totally ordered
GBL-algebras).

Theorem (Jipsen-Montagna 2010):

Every GBL-algebra embeds in a poset product of totally
ordered MV-algebras.

Every n-potent GBL-algebra (satisfying xn+1 = xn) embeds
into a poset product of finite simple n-potent MV-algebra
chains.

Consequences: Decidability for universal theory of GBL
(Jipsen-Montagna), amalgamation for some subvarieties
(Metcalfe-Montagna-Tsinakis), etc.
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Part II:
Representations beyond divisibility
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New representations

We’ll head toward some poset product representations for
non-divisible residuated lattices.

The representations are most useful when the factors Ax have
much lower complexity than the algebras of interest.

We focus on the case with simple factors: Where the only
congruences are the trivial ones.

Theorem (Kowalski-Ono, 2000):

Let A be a simple residuated lattice and let a ∈ A with a 6= 1.
Then there exists n ∈ N such that an = 0.

Simple residuated lattices are in particular multipotent: For
each a there exists n ∈ N such that an+1 = an.

This highlights the role idempotents play in poset products of
simple residuated lattices, i.e. since simple ones have no
idempotents other than 0, 1.
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Some definitions

Definition (idempotent center):

The idempotent center of the residuated lattice A is the set
H(A) = {a ∈ A : a2 = a}.
If H(A) is a (necessarily Heyting) subalgebra of A and for all
i ∈ H(A), a ∈ A we have ia = i ∧ a, we say that it is a central
subalgebra of A and denote it by H(A).

Definition (central filters):

A filter of a residuated lattice A is a subset that is upward
closed and closed under ·.
For each subset S of A, there is a smallest filter containing S
called the filter generated by S .

A filter is called central if it is the filter generated the
idempotent elements it contains.

A value is completely meet irreducible element in the lattice of
filters. 18 / 34



Centered residuated lattices

Representability by poset products of simple residuated lattices
turns out to depend crucially on H(A) fitting inside A ‘nicely’:

Definition:

We say that a residuated lattice A is centered if:

H(A) is a central subalgebra of A.

Every filter of A is central.

A satisfies the square condition: For every i ∈ H(A) and
a ∈ A, there exists j ∈ H(A) such that i ∧ j ≤ a ≤ i ∨ j .

Theorem (F.-Jipsen 2022+):

Every centered residuated lattice embeds into a poset product of
simple residuated lattices, and is therefore isomorphic to an algebra
of antichain labelings.
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Multipotence

Recall that a residuated lattice is multipotent if for all a there
exists n ∈ N such that an+1 = an.

Lemma (F.-Jipsen 2022+):

The follow are equivalent for a residuated lattice A.

1 Every filter of A is central.

2 A is multipotent.

Proof: (1)⇒ (2). Let a ∈ A, and let x = FgA(a). By assumption
x is generated by the idempotents it contains, so there exists some
i ∈ H(A) with i ≤ a and i ∈ x . On the other hand, since x is
generated by {a} there exists n ∈ N such that an ≤ i . This implies
that i = an, so i = an. It follows that an+1 = an.
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The square condition

The square condition: For every i ∈ H(A) and a ∈ A, there exists
j ∈ H(A) such that i ∧ j ≤ a ≤ i ∨ j .

• i ∨ j

•i2 = i • j = j2• a

• i ∧ j
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The Blok-Ferreirim theorems

The Blok-Ferreirim theorem has had an impact in the theory of
hoops and GBL-algebras, and roughly states that subdirectly
irreducibles can be decomposed as a nested/ordinal sum with a
totally ordered algebra on top.

When all the filters are central, as in centered residuated lattices,
we can give a particularly nice form of this theorem due to the
square condition:

Blok-Ferreirim Theorem for Centered Residuated Lattices
(F.-Jipsen 2022+):

Let A be a subdirectly irreducible centered residuated lattice. Then
there is a maximum element m of H(A) \ {1}, and for all a ∈ A we
have m ≤ a or a ≤ m.
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Proof of the Blok-Ferreirim Theorem

Proof: Since A is subdirectly irreducible, so is H(A) (because all
filters are central). Thus there exists a unique subcover m of 1 in
H(A). Clearly, m is the maximum element of H(A) \ {1}, so let
a ∈ A. By the square condition, there exists j ∈ H(A) such that
m ∧ j ≤ a ≤ m ∨ j . By the choice of m, we have that j = 1 or
j ≤ m. If j = 1, then we get m = m ∧ j ≤ a. If j ≤ m, then
a ≤ m ∨ j = m.
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Sketch of the main proof

Let A be a centered residuated lattice. We will embed A in a
poset product of simple residuated lattices.

Step 1: Let (X ,⊆) be the collection of values of A ordered by
inclusion. Because all the filters of A are central, the lattice of
filers of A is isomorphic to the lattice of filters of H(A) and we can
just as well take the poset of values of H(A).

Step 2: For each x ∈ X , A/x is subdirectly irreducible because x
is completely meet irreducible. The follow is not hard to show.

Lemma:

The class of centered residuated lattices is closed under quotients.

Hence, for each x ∈ X , A/x is a subdirectly irreducible centered
residuated lattice.
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Sketch of the main proof (cont)

Step 3: By the Blok-Ferreirim Theorem for centered residuated
lattices, for each A/x there exists mx ∈ H(A/x) such that for all
a ∈ A/x , a ≤ mx or mx ≤ a. For each x ∈ X , define Ax =↑ mx .
Then Ax the universe of 0-free subalgebra of A/x , so forms a
residuated lattice Ax .

Step 4: We claim that A embeds in
∏

(X ,⊆)Ax . The embedding is
a 7→ [a](−), where for each x ∈ X ,

[a](x) =

{
a/x if mx ≤ a/x

0 if a/x < mx .

The proof that a 7→ [a](−) is an embedding depends on the fact
that H(A) is a central subalgebra of A, together with A being
multipotent (equivalent to each filter being central).
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Varieties and logics

Centered residuated lattices don’t form an especially nice class,
and what we’re interested in for logical purposes are varieties.

Definition:

For each n ∈ N, let Sn denote the subvariety of residuated lattices
axiomatized by:

anb = an ∧ b.

an → bn = (an → bn)2.

a ≤ bn ∨ (bn → an).

Further, for each n ∈ N denote by Cn the subvariety of Sn

axiomatized by

(a→ b)→ (b → a) = b → a.
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Concrete embedding theorems

Theorem (Jipsen-Montagna 2010):

For each n ∈ N, the variety generated by poset products of simple
n-potent MV-algebras chains is the variety of n-potent
GBL-algebras.

Theorem (F.-Jipsen 2022+):

Let n ∈ N.

Sn is the variety generated by poset products of simple
n-potent residuated lattices.

Cn is the variety generated by poset products of simple
n-potent MTL-algebras.
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Part III:
Applications
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A sketch of some applications

As we discussed, representations by antichain labelings can be
interpreted as Kripke-type semantics for substructural logics.

In particular, the theorems of the last few slides indicate how
to give Kripke semantics in terms of non-classical frames for
the logics corresponding to each of the varieties Sn, Cn.

Details about doing this in general can be found in F., Poset
Products as Relational Models, Studia Logica 110:95–120
(2022), https://doi.org/10.1007/s11225-021-09956-z

There’s also a connection to modal logic that we’ve seen
through the operator 2.

We’ll outline the latter in the context of GBL-algebras, drawn
from F. and Zuluaga, Some Modal and Temporal Translations
of Generalized Basic Logic RAMiCS 2021, 176-191.

Confined to GBL for clarity/interest, but easily applied to Sn,
Cn etc.
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The classical GMT translation

The Gödel-McKinsey-Tarski translation connects intuitionistic
logic (modeled by Heyting algebras) to the classical modal
logic S4 (modeled by interior algebras).

Recursively define a translation T from the language of
intuitionsitic logic to modal logic by T (p) = 2p for any
propositional variable p, T (0) = 0, T (ϕ ? ψ) = T (ϕ) ? T (ψ)
for ? ∈ {∧,∨}, and T (ϕ→ ψ) = 2(ϕ→ ψ).

Extend to sets of formulas in the obvious way:
T (Γ) = {T (ϕ) : ϕ ∈ Γ}.

Theorem (Gödel, McKinsey, Tarski):

Γ `Int ϕ if and only if T (Γ) `S4 T (ϕ).
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S4MV-algebras

We can use the machinery of antichain labelings to give a fuzzy
version of the GMT translation. The main algebraic models of our
modal  Lukasiewicz logic are as follows.

Definition:

We say that an algebra A = (A,∧,∨, ·,→, 0, 1, {2}) is an
S4MV-algebra provided that:

(A,∧,∨, ·,→, 0, 1) is an MV-algebra (BL-algebra with
(x → 0)→ 0 = x).

2 is an interior operator and a {∧, ·, 0, 1}-endomorphism of
(A,∧,∨, ·,→, 0, 1).

S4MV-algebras are direct generalizations of the interior algebras
that interpret classical S4; main difference is that 2 is also
assumed to preserve · (which is just ∧ in the classical case).
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Translating GBL

In the embedding theorem for GBL-algebras, the poset
product is a conuclear image of a direct product
B =

∏
x∈X Ax of a family of finite simple MV-algebras.

Turns out that the conucleus 2 satisfies the conditions so that
(B,2) is an S4MV-algebra.

Defining T as in the classical case, but stipulating that
T (ϕ · ψ) = T (ϕ) · T (ψ), we can prove:

Theorem (F.-Zuluaga 2021):

Γ `GBL ϕ if and only if T (Γ) `S4MV T (ϕ)

Actually, this is extended to temporal modalities in the paper.
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On-going and future work

Add topological content to what we’ve seen, extending Esakia
duality to the substructural setting.

Go beyond simple factors for more expressive representation
theories.

Further develop the connection to modal logic, going for a
substructural Blok-Esakia theory of modal companions.
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Thank you!

Thank you!
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