Poset Product Representations Over Simple Residuated Lattices

Wesley Fussner (Joint work with P. Jipsen)

Mathematical Institute, University of Bern Switzerland

> RAMiCS 2023 Augsburg, Germany

3 April 2023

Definition:

A (bounded, commutative, integral) residuated lattice is an algebra $(A,\wedge,\vee,\cdot,\to,0,1)$ such that

- $(A, \land, \lor, 0, 1)$ is a bounded lattice;
- $(A, \cdot, 1)$ is a commutative monoid;
- For all $x, y, z \in A$;

$$x \cdot y \leq z \iff x \leq y \to z.$$

Recall that an algebraic structure is simple if it has no non-trivial congruences (quotients).

Residuated lattices form an arithmetical (= congruence distributive + congruence permutable) variety with the congruence extension property. Examples include:

- Heyting algebras (where \cdot is \wedge) and Boolean algebras.
- MTL-algebras, the algebraic semantics of t-norm based logics, satisfying (x → y) ∨ (y → x) = 1 (residuated lattices that are subdirect products of totally ordered ones).
- GBL-algebras, satisfying divisibility $x(x \rightarrow y) = x \land y$.
- BL-algebras, the algebraic semantics of Petr Hájek's basic fuzzy logic, the intersection of MTL and GBL.
- MV-algebras, the algebraic semantics of Łukasiewicz logic, BL-algebras that satisfy $(x \rightarrow 0) \rightarrow 0 = x$.
- Gödel algebras, the algebraic semantics of Gödel-Dummett logic, the intersection of MTL and Heyting algebras.

Representations of algebraic structures as algebras whose members are functions have a long history (e.g., representations of groups as groups of permutations). This talk is about representations of residuated lattices in terms of antichain labelings (special monotone functions). Benefits:

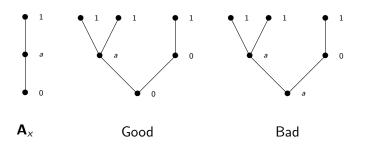
- Relational semantics for corresponding logics (F. 2022).
- Translations into natural modal logics (F.-Zuluaga Botero 2021).
- Decidability of the universal theory (Jipsen-Montagna 2010).
- Amalgamation and interpolation for the corresponding logics (Metcalfe-Montagna-Tsinakis 2014).

Antichain labelings

Definition:

Let (X, \leq) be a poset, and let $\{\mathbf{A}_x : x \in X\}$ be an indexed collection of residuated lattices sharing a common least element 0 and common greatest element 1. An antichain labeling (or ac-labeling) is a choice function $f \in \prod_{x \in X} A_x$ such that for all $x, y \in X$,

$$x < y \implies f(x) = 0 \text{ or } f(y) = 1.$$



If **A** is a residuated lattice, a map $\sigma: A \to A$ is a conucleus on **A** if for all $x, y \in A$:

- $\sigma(x) \leq x$
- $\sigma(\sigma(x)) = \sigma(x)$.
- $x \leq y$ implies $\sigma(x) \leq \sigma(y)$

If σ is a conucleus on $\mathbf{A}=(\textit{A},\wedge,\vee,\cdot,
ightarrow,0,1)$, then

$$\mathbf{A}_{\sigma} = (\sigma[A], \wedge_{\sigma}, \lor, \cdot, \rightarrow_{\sigma}, 0, \sigma(1))$$

is also a residuated lattice, where $x \wedge_{\sigma} y = \sigma(x \wedge y)$ and $x \rightarrow_{\sigma} y = \sigma(x \rightarrow y)$.

Let (X, \leq) be a poset and $\{\mathbf{A}_x : x \in X\}$ is an indexed collection of residuated lattices sharing a common least element 0 and common greatest element 1. Set $\mathbf{B} = \prod_{x \in X} \mathbf{A}_x$ and define a map $\Box : B \to B$ by

$$\Box(f)(x) = egin{cases} f(x) & ext{if } f(y) = 1 ext{ for all } y > x \ 0 & ext{if there exists } y > x ext{ with } f(y)
eq 1.$$

Then \Box is a conucleus on the direct product. The conuclear image consists of antichain labelings and is the poset product of the indexed family:

$$\mathsf{B}_{\Box} = \prod_{(X,\leq)} \mathsf{A}_{X}.$$

Poset products were originally introduced by P. Jipsen and. F. Montagna as a common generalization of direct products and nested sums (sometimes called ordinal sums).

- If (X, =) is the index poset, then the poset product of $\{\mathbf{A}_x : x \in X\}$ is just the direct product.
- If x < y in the poset ({x, y}, ≤), then the poset product consists of the nested sum of A_x and A_y (intuitively obtained by replacing the unit of A_x by A_y).

Poset products can be thought of as iterating the direct product and nested sum constructions.

Recall that a GBL-algebra is a residuated lattice that satisfies divisibility $(x(x \rightarrow y) = x \land y)$. Almost all of the past work on poset product representations has been directed at GBL-algebras and BL-algebras (the subvariety generated by totally ordered GBL-algebras).

Theorem (Jipsen-Montagna 2010):

- Every GBL-algebra embeds in a poset product of totally ordered MV-algebras.
- Every *n*-potent GBL-algebra (satisfying xⁿ⁺¹ = xⁿ) embeds into a poset product of finite simple *n*-potent MV-algebra chains.

Some definitions

Definition (idempotent center):

- The idempotent center of the residuated lattice **A** is the set $\mathcal{H}(A) = \{a \in A : a^2 = a\}.$
- If H(A) is a (necessarily Heyting) subalgebra of A and for all i ∈ H(A), a ∈ A we have ia = i ∧ a, we say that it is a central subalgebra of A and denote it by H(A).

Definition (central filters):

- A filter of a residuated lattice **A** is a subset that is upward closed and closed under .
- For each subset S of A, there is a smallest filter containing S called the filter generated by S.
- A filter is called central if it is the filter generated the idempotent elements it contains.
- A value is completely meet irreducible element in the lattice of filters.

Representability by poset products of simple residuated lattices turns out to depend crucially on $\mathcal{H}(A)$ fitting inside **A** 'nicely':

Definition:

We say that a residuated lattice **A** is centered if:

- $\mathcal{H}(\mathbf{A})$ is a central subalgebra of \mathbf{A} .
- Every filter of **A** is central.
- A satisfies the diamond condition: For every $i \in \mathcal{H}(A)$ and $a \in A$, there exists $j \in \mathcal{H}(A)$ such that $i \wedge j \leq a \leq i \vee j$.

Theorem (F.-Jipsen 2023+):

Every centered residuated lattice embeds into a poset product of simple residuated lattices, and is therefore isomorphic to an algebra of antichain labelings. Recall that a residuated lattice is multipotent if for all *a* there exists $n \in \mathbb{N}$ such that $a^{n+1} = a^n$.

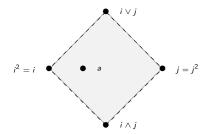
Lemma (F.-Jipsen 2023+):

The follow are equivalent for a residuated lattice A.

- Every filter of **A** is central.
- A is multipotent.

The diamond condition

The diamond condition: For every $i \in \mathcal{H}(A)$ and $a \in A$, there exists $j \in \mathcal{H}(A)$ such that $i \wedge j \leq a \leq i \vee j$.



The Blok-Ferreirim theorem has had an impact in the theory of hoops and GBL-algebras, and roughly states that subdirectly irreducibles can be decomposed as a nested/ordinal sum with a totally ordered algebra on top.

When all the filters are central, as in centered residuated lattices, we can give a particularly nice form of this theorem due to the diamond condition:

Blok-Ferreirim Theorem for Centered Residuated Lattices (F.-Jipsen 2023+):

Let **A** be a subdirectly irreducible centered residuated lattice. Then there is a maximum element m of $\mathcal{H}(A) \setminus \{1\}$, and for all $a \in A$ we have $m \leq a$ or $a \leq m$. Let \mathbf{A} be a centered residuated lattice. We will embed \mathbf{A} in a poset product of simple residuated lattices.

Step 1: Let (X, \subseteq) be the collection of values of **A** ordered by inclusion. Because all the filters of **A** are central, the lattice of filters of **A** is isomorphic to the lattice of filters of $\mathcal{H}(\mathbf{A})$ and we can just as well take the poset of values of $\mathcal{H}(\mathbf{A})$.

Step 2: For each $x \in X$, \mathbf{A}/x is subdirectly irreducible because x is completely meet irreducible. The follow is not hard to show.

Lemma:

The class of centered residuated lattices is closed under quotients.

Hence, for each $x \in X$, \mathbf{A}/x is a subdirectly irreducible centered residuated lattice.

Step 3: By the Blok-Ferreirim Theorem for centered residuated lattices, for each \mathbf{A}/x there exists $m_x \in \mathcal{H}(\mathbf{A}/x)$ such that for all $a \in A/x$, $a \le m_x$ or $m_x \le a$. For each $x \in X$, define $A_x = \uparrow m_x$. Then A_x the universe of 0-free subalgebra of \mathbf{A}/x , so forms a residuated lattice \mathbf{A}_x .

Step 4: We claim that **A** embeds in $\prod_{(X,\subseteq)} \mathbf{A}_x$. The embedding is $a \mapsto [a](-)$, where for each $x \in X$,

$$[a](x) = egin{cases} a/x & ext{if } m_x \leq a/x \ 0 & ext{if } a/x < m_x. \end{cases}$$

The proof that $a \mapsto [a](-)$ is an embedding depends on the fact that $\mathcal{H}(\mathbf{A})$ is a central subalgebra of \mathbf{A} , together with \mathbf{A} being multipotent (equivalent to each filter being central).

Centered residuated lattices don't form an especially nice class, and what we're interested in for logical purposes are varieties.

Definition:

For each $n \in \mathbb{N}$, let S_n denote the subvariety of residuated lattices axiomatized by:

• $a^n b = a^n \wedge b$.

•
$$a^n \rightarrow b^n = (a^n \rightarrow b^n)^2$$
.

• $a \leq b^n \vee (b^n \rightarrow a^n).$

Further, for each $n \in \mathbb{N}$ denote by C_n the subvariety of S_n axiomatized by

$$(a \rightarrow b) \rightarrow (b \rightarrow a) = b \rightarrow a.$$

Theorem (Jipsen-Montagna 2010):

For each $n \in \mathbb{N}$, the variety generated by poset products of simple *n*-potent MV-algebras chains is the variety of *n*-potent GBL-algebras.

Theorem (F.-Jipsen 2023+):

Let $n \in \mathbb{N}$.

- S_n is the variety generated by poset products of simple *n*-potent residuated lattices.
- C_n is the variety generated by poset products of simple n-potent totally ordered residuated lattice.

Thank you!

Thank you!

- W. Fussner, Poset Products as Relational Models, <u>Studia</u> Logica 110:95–120 (2022).
- W. Fussner and W. Zuluaga Botero, Some Modal and Temporal Translations of Generalized Basic Logic, Proc. of RAMiCS 2021, LNTCS vol. 13027, pp. 176-191.
- P. Jipsen and F. Montagna, Embedding theorems for classes of GBL-algebras, J. Pure Appl. Algebra 214:1559-1575 (2010).
- G. Metcalfe, F. Montagna, and C. Tsinakis, Amalgamation and interpolation in ordered algebras, J. Algebra 402:21–82 (2014).