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Sketch of the talk

Residuated lattices: Equivalent algebraic semantics for
substructural logics.

Extensively studied both from logical perspective and from
classical algebra, as well as connections to algebraic proof
theory.

Idempotence: Important both as building blocks for other
residuated structures, and complements studies of structures
in the cancellative family (`-groups, MV-algebras, ...).

This talk: Describe structure on three levels—ordinal sums of
totally ordered posets, formulation as idempotent Galois
connections, and enhanced monoidal preorders.

Applications to semilinear varieties: Congruence extension
property, strong amalgamation property, epimorphism
surjectivity, and corresponding logical properties.
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Residuated lattices

A residuated lattice is an algebraic structure of the form
(A,∧,∨, ·, \, /, 1) where

(A,∧,∨) is a lattice,

(A, ·, 1) is a monoid, and

for all x , y , z ∈ A,

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y .

Familiar examples: Boolean algebras, Heyting algebras,
MV-algebras, relation algebras, lattice-ordered groups, algebras of
ideals of rings, etc.

This talk: (A,∧,∨) is totally ordered and x · x = x .
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Idempotent chains: The Sugihara monoids

2

1

e = 0

−1

−2

Odd Sugihara monoids are commutative, idempotent,
distributive residuated lattices where the map
x 7→ x\0 = 0/x (= x → 0) is an involution. They are
generated by a generic example given on the integers
Z.

Multiplication is the meet with respect to a
non-standard order:

. . . < −2 < 2 < −1 < 1 < 0 = e

This means x · y is whichever of x or y is further
away from the identity, unless there is a tie (then it is
the meet).
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Idempotent chains: The non-commutative case

ai

ai+1

1

bi+1

bi

In 2004, Galatos gave lots of generalizations to the
non-commutative case built on an index set (Z or N
or a finite set). Main ingredient is a subset J of the
index set that determines how to break ties.

The product of two elements is the furthest away
from 1, e.g. b0a1 = a1b0 = b0. If there is a tie, then:

if i ∈ J, then aibi = ai and biai = bi (Left), and

if i 6∈ J, then aibi = bi and biai = ai (Right).

The inverse operations x` := 1/x and x r := x\1 play
an important role.
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Inverses as a nuclear image

Recall that a nucleus on a residuated lattice is a closure operator γ
that satisfies γ(x) · γ(y) ≤ γ(xy).

For an idempotent residuated chain A, we define the map γ on A
by

γ(x) = x`r ∧ x r`.

Lemma:

If A is an idempotent residuated chain, then

1 γ is a nucleus.

2 γ[A] := Ai = {x` : x ∈ A} ∪ {x r : x ∈ A}.
3 γ(x)r = x r and γ(x)` = x`, for all x ∈ A.

4 The sets γ−1(a), where a ∈ Ai , form convex subposets of A
with top element a, and they are ordered linearly according to
the value of a: if x ∈ γ−1(a) and y ∈ γ−1(b), where a, b are
distinct elements of Ai , then x ≤ y iff a ≤ b.
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Quasi-involutivity

•

•

1 •

•

•

Definition:

An idempotent residuated chain is called
quasi-involutive if it satisfies x = x`r ∧ x r`.

The set of inverses Ai is the universe of a
subalgebra of A.

Ai is quasi-involutive.

If A is commutative, then x r = x` and Ai is an
odd Sugihara monoid.

We’ll often call Ai the skeleton of A.
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Operations from the skeleton

Actually, all operations of an idempotent residuated chain can be
completely described terms of the skeleton.

Lemma:

In every idempotent residuated chain we have

xy =

{
x y ∈ (x r , x ] or y ∈ [x , x r ]

y x ∈ (y `, y ] or x ∈ [y , y `]

x\y =

{
x r ∨ y x ≤ y

x r ∧ y y < x
y/x =

{
x` ∨ y x ≤ y

x` ∧ y y < x
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Inverses and centrality

We call an element a central if ax = xa for all x , and write
C (a) := {x : ax = xa}. Define also x∗ := x` ∨ x r , and recall that a
semigroup S is left-zero if it satisfies xy = x and right-zero it
satisfies xy = y .

Lemma:

Let a be an element of an idempotent residuated chain A. Then:

1 If a is central (equivalenty, a` = ar ), then C (a) = A and
{a, a∗} forms a semilattice with multiplication equal to the
inherited meet.

2 If a is not central (equivalenty, a` 6= ar ), then C (a) = {a∗}c
and {a, a∗} forms a left-zero or a right-zero semigroup.

Also, there is no element between the elements a` and ar and
these elements form a covering pair.
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Level 1: Ordinal sums

Definition:

A decomposition system is a pair (S, {As : s ∈ S}), where

1 S is a quasi-involutive idempotent residuated chain.

2 For all s ∈ S , As is a totally ordered poset with top element s.

3 If s is not central, then As is trivial.

For each decomposition system, you can define an idempotent
residuated chain based on the ordinal sum

⊕
s∈S As where the

operations are as before.

Theorem:

Every idempotent residuated chain is isomorphic to the ordinal sum
corresponding to its decomposition system.

Caution: This is the ordinal sum of posets/lattices, not as in e.g.
BL-algebras.
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A splitting

Recall that x∗ = x` ∨ x r , and further define x? = x` ∧ x r .

Lemma:

For all a, b in a residuated residuated lattice we have a ≤ b? iff
b ≤ a?. In other words the pair (a?, a?) is a Galois connection.
Moreover, in idempotent residuated chains, (a?, a∗) forms a
splitting pair: for all c , c ≤ a? or a∗ ≤ c .
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Level 2: Idempotent Galois connections

Definition:

An idempotent Galois connection is an algebra (A,∧,∨, `, r , 1)
such that:

1 (A,∧,∨) is a chain.

2 (`, r ) forms a Galois connection.

3 1` = 1r = 1.

4 For all x , there is no element between x` and x r (i.e., (x?, x∗)
forms a splitting pair).

The {∧,∨, `, r , 1}-reduct of an idempotent residuated chain forms
an idempotent Galois connection, and in fact...

Theorem:

Idempotent residuated chains are definitionally-equivalent to
idempotent Galois connections.
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The natural order and the monoidal order

Previous work on idempotent residuated chains (e.g. GJM20,
CZ09) have used two ordering relations connected to the product
operation:

The natural order: x ≤n y iff xy = yx = x .

The monoidal preorder: x v y iff xy = x .

Abbreviate x < y iff x v y and y 6v x .

Lemma:

The following hold in idempotent residuated chains.

1 The relation ≤n is an order the relation v is a preorder.

2 x <n y iff x < y , for all x , y .

3 xy = x iff x v y . Also, xy = y iff y 6v x .

4 x < y iff y 6= x = xy = yx .
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Insufficiency of the monoidal preorder

The monoidal preorder contains more information than the natural
order, but it isn’t enough to capture the structure of idempotent
residuated chains:
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b5

b4
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a2 b2

b1
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1
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b1
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Level 3: Enhanced monoidal preorders

We can fix this problem with the monoidal preorder by enriching
the structure: We add information about which elements are
positive and which are negative.

Definition:

(P,v,P+,P−, 1, ?) is an enhanced monoidal preorder if: (P,v) is
a pre-ordered set with sole maximum element 1 (x < 1, for all
x 6= 1), P+ and P− are totally ordered subsets of P (i.e., the
restriction of v to each of P+, P− antisymmetric and total) with
P+ ∪ P− = P and P+ ∩ P− = {1}, and ? is a unary operation on
P such that 1? = 1 and for all other elements

1 for b ∈ P−, b? is the smallest element of P+ such that b < b?

2 for a ∈ P+, a? is the largest element of P− such that a? < a.

3 the preordered is layered: if two distinct elements are not
related by < nor =, then they have different signs and their
<-upsets and downsets coincide.
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Level 3: Enhanced monoidal preorders

In enhanced monoidal preorders, positive elements are drawn on
the left and negative elements on the right . We can distinguish
idempotent residuated chains with the same monoidal preorder
under this regime:
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Level 3: Enhanced monoidal preorders

For an idempotent residuated chain, set A+ = {a ∈ A : 1 ≤ a} and
A− = {a ∈ A : a ≤ 1}. Then (A,v,A+,A−, 1, ?) is an enhanced
monoidal preorder. In fact:

Theorem:

Idempotent residuated chains are definitionally-equivalent to
enhanced monoidal preorders.

We will sketch the inverse of the correspondence: Building
idempotent residuated chains from enhanced monoidal preorders.
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From enhanced monoidal preorders to residuated chains

Given an enhanced monoidal preorder (P,v,P+,P−, 1, ?), define
the ordered algebra A with underlying set A = P, with order given
by:

x ≤ y iff (x , y ∈ P− and x v y) or (x , y ∈ P+ and y v x) or
(x ∈ P− and y ∈ P+)

with inverses by x` = x r = x?, if x is a v-conical element
(v-comparable to every element), and for a ∈ P+ and b ∈ P−

1 a` = b, ar = a?, b` = b?, br = a, if a, b are mutually
comparable and

2 a` = a?, ar = b, b` = a, br = b?, if a, b are incomparable

This gives an idempotent Galois connection that can be converted
into an idempotent residuated chain.
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An application: Amalgamation

Intended application of all of this was to obtain the strong
amalgamation property for semilinear residuated lattices.

A span in a class K of algebras is a 5-tuple (A,B,C, fB, fC), where
A,B,C ∈ K and fB : A→ B and fC : A→ C are embeddings.

K has the amalgamation property if for every span
(A,B,C, fB, fC) in K there exists a triple (D, gB, gC) so that
gB : B→ D and gC : C→ D are embdeddings and
gBfB = gCfC (i.e., the corresponding diagram commutes).

K has the strong amalgamation property if the amalgam
above can be taken so that the intersection of the images of
gB and gC is exactly the image of A.
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Amalgamation: Failure

It turns out that the amalgamation property fails for idempotent
residuated chains (and even semilinear idempotent RLs):

a3 ≺ b`
3 = 1

br
2 =a3 b3 = a`3

b2 = ar3

a′3 ≺ (b′
3)

` = 1

a′3 b′
3

b′
2 = (a′3)

r(b′
2)

r = a′2

b′
1

a′2

a′3

1

b′
3

b′
2

b′
1
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?-involutivity

Recall that x? = x` ∧ x r . An idempotent residuated chain is called
?-involutive if it satisfies x?? = x .

Theorem:

The class of ?-involutive idempotent residuated chains has the
strong amalgamation property.

Proof idea: Rests on a characterization of the enhanced monoidal
preorders of ?-involutive idempotent residuated chains. Roughly
the amalgam of A and B is constructed as an ordinal sum
(corresponding to a nested sum) of their enhanced monoidal
preorders.
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Lifting amalgamation

Using some general universal algebraic results, we can lift the
amalgamation property from the class of ?-involutive residuated
chains to the variety they generate:

Theorem:

The variety of ?-involutive semilinear idempotent residuated
lattices has the strong amalgamation property.

To do this, we need to show that the class has the congruence
extension property.
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The congruence extension property

An algebra A has the congruence extension property if whenever
B ≤ A and Θ is a congruence on B, there exists a congruence Ψ
on A such that Θ = Ψ ∩ A2.

Theorem

The variety of semilinear idempotent residuated lattices has the
congruence extension property.

Proof (sketch): Key idea is that congruences of residuated
lattices are given by filters that are closed under iterated
conjugates, i.e., compositions of maps of the form a 7→ (xa)/x ∧ 1
and a 7→ (x\ax) ∧ 1. One can use the structural results we’ve
given to show that semilinear idempotent residuated lattices satisfy
y ∧ y `` ∧ y rr ≤ xy/x , x\yx , and this allows us to eliminate iterated
conjugates.
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Thank you!

Thank you!
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