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Sketch of the talk

o Residuated lattices: Equivalent algebraic semantics for
substructural logics.

@ Extensively studied both from logical perspective and from
classical algebra, as well as connections to algebraic proof
theory.

@ Idempotence: Important both as building blocks for other
residuated structures, and complements studies of structures
in the cancellative family (¢-groups, MV-algebras, ...).

@ This talk: Describe structure on three levels—ordinal sums of
totally ordered posets, formulation as idempotent Galois
connections, and enhanced monoidal preorders.

@ Applications to semilinear varieties: Congruence extension
property, strong amalgamation property, epimorphism
surjectivity, and corresponding logical properties.
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Residuated lattices

A residuated lattice is an algebraic structure of the form
(AN, V,-,\, /,1) where

o (A A, V) is a lattice,
e (A,-,1) is a monoid, and

o forall x,y,z € A,
x y<z <= y<x\z < x<z/y.

Familiar examples: Boolean algebras, Heyting algebras,
MV-algebras, relation algebras, lattice-ordered groups, algebras of
ideals of rings, etc.

This talk: (A, A, V) is totally ordered and x - x = x.
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Idempotent chains: The Sugihara monoids

Odd Sugihara monoids are commutative, idempotent,
distributive residuated lattices where the map

2 x +— x\0 = 0/x (= x — 0) is an involution. They are
1 generated by a generic example given on the integers
Z.
Multiplication is the meet with respect to a
e=0e non-standard order:

L. =2<2<-1<1l<0=¢

-1

2 This means x - y is whichever of x or y is further
away from the identity, unless there is a tie (then it is
the meet).
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Idempotent chains: The non-commutative case

ai

ai+1

le

bit1

In 2004, Galatos gave lots of generalizations to the
non-commutative case built on an index set (Z or N
or a finite set). Main ingredient is a subset J of the
index set that determines how to break ties.

The product of two elements is the furthest away
from 1, e.g. bgpa; = a1bg = bg. If there is a tie, then:

e if i € J, then a;b; = a; and bja; = b; (Left), and
o if/ ¢ J, then a;b; = b; and b;a; = a; (Right).

The inverse operations x* := 1/x and x" := x\1 play
an important role.
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Inverses as a nuclear image

Recall that a nucleus on a residuated lattice is a closure operator ~
that satisfies v(x) - v(y) < v(xy).
For an idempotent residuated chain A, we define the map v on A
by y

v(x) = x A x"™

If A is an idempotent residuated chain, then
@ v is a nucleus.
Q A=A ={x' ' xc AAU{x": x € A}
Q@ ~(x)" = x" and y(x)* = x¢, for all x € A.
@ The sets 'y_l(a), where a € A, form convex subposets of A
with top element a, and they are ordered linearly according to

the value of a: if x € v71(a) and y € y~1(b), where a, b are
distinct elements of A’, then x < y iff a < b.
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Quasi-involutivity

Definition:

*o—o

An idempotent residuated chain is called
quasi-involutive if it satisfies x = x A x"¢.

IT @ The set of inverses A’ is the universe of a
subalgebra of A.
e A’ is quasi-involutive.
T o If A is commutative, then x" = x! and A’ is an
) odd Sugihara monoid.

o We'll often call A’ the skeleton of A.
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Operations from the skeleton

Actually, all operations of an idempotent residuated chain can be
completely described terms of the skeleton.

In every idempotent residuated chain we have

x ye(x",x]ory e [x,x]
Xy =
y xefylorxely,y]

x"Vy x<y xX*Vvy x<y
xX\y =1, y/x=1",
XNy y<x XNy y<x

A
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Inverses and centrality

We call an element a central if ax = xa for all x, and write

C(a) := {x : ax = xa}. Define also x* := x* V x", and recall that a
semigroup S is left-zero if it satisfies xy = x and right-zero it
satisfies xy = y.

Let a be an element of an idempotent residuated chain A. Then:
@ If ais central (equivalenty, a’ = a"), then C(a) = A and
{a, a*} forms a semilattice with multiplication equal to the
inherited meet.
@ If ais not central (equivalenty, a’ # a"), then C(a) = {a*}¢
and {a, a*} forms a left-zero or a right-zero semigroup.
Also, there is no element between the elements a’ and a" and
these elements form a covering pair.
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Level 1: Ordinal sums

Definition:

A decomposition system is a pair (S, {As : s € S}), where
@ S is a quasi-involutive idempotent residuated chain.
@ Forall s € S, A; is a totally ordered poset with top element s.

© If s is not central, then As is trivial.

For each decomposition system, you can define an idempotent
residuated chain based on the ordinal sum @, 5 As where the
operations are as before.

Every idempotent residuated chain is isomorphic to the ordinal sum
corresponding to its decomposition system.

Caution: This is the ordinal sum of posets/lattices, not as in e.g.
BL-algebras.
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A splitting

Recall that x* = x’ \V x", and further define x* = x/ A x".

For all a, b in a residuated residuated lattice we have a < b* iff
b < a*. In other words the pair (a*,a*) is a Galois connection.
Moreover, in idempotent residuated chains, (a*, a*) forms a
splitting pair: for all ¢, ¢ < a* or a* < c.

11/26



Level 2: Idempotent Galois connections

An idempotent Galois connection is an algebra (A,/\,V,Z, r1)
such that:

O (A/A,V) is a chain.

@ (“,") forms a Galois connection.

Q@ 1=1=1

@ For all x, there is no element between x’ and x" (i.e., (x*, x*)
forms a splitting pair).

The {A,V, %", 1}-reduct of an idempotent residuated chain forms
an idempotent Galois connection, and in fact...

Idempotent residuated chains are definitionally-equivalent to
idempotent Galois connections.
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The natural order and the monoidal order

Previous work on idempotent residuated chains (e.g. GJM20,
CZ09) have used two ordering relations connected to the product
operation:

@ The natural order: x <,, y iff xy = yx = x.
@ The monoidal preorder: x C y iff xy = x.

Abbreviate x C y iff x C y and y £ x.

The following hold in idempotent residuated chains.
© The relation <,, is an order the relation C is a preorder.
Q x<,yiffxCy, forall x,y.
Q@ xy=xiff xCy. Also, xy =y iff y £ x.
Q@ xLCyiff y #x=xy = yx.

A
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Insufficiency of the monoidal preorder

The monoidal preorder contains more information than the natural
order, but it isn't enough to capture the structure of idempotent
residuated chains:

an az
C3 1 as
as as bs 1
1 b bs
b5 C3 b4
by az by C3
by b bz
b1 bl
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Level 3: Enhanced monoidal preorders

We can fix this problem with the monoidal preorder by enriching
the structure: We add information about which elements are
positive and which are negative.

Definition:

(P,C, Pt P~,1,*)is an enhanced monoidal preorder if: (P,C) is
a pre-ordered set with sole maximum element 1 (x C 1, for all

x # 1), P™ and P~ are totally ordered subsets of P (i.e., the
restriction of C to each of P*, P~ antisymmetric and total) with
PTUP~ =P and Pt NP~ = {1}, and * is a unary operation on
P such that 1* = 1 and for all other elements

@ for b € P~, b* is the smallest element of Pt such that b C b*
@ for a € PT, a* is the largest element of P~ such that a* C a.

© the preordered is layered: if two distinct elements are not
related by  nor 1, then they have different signs and their
C-upsets and downsets coincide.
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Level 3: Enhanced monoidal preorders

In enhanced monoidal preorders, positive elements are drawn on
the left and negative elements on the right . We can distinguish
idempotent residuated chains with the same monoidal preorder

under this regime:

a a
1 as 1 as
as bs as as bs 1
b 1 by bs
as bs b3 ba
a b by a by b3
by by by by
b b

16 /26



Level 3: Enhanced monoidal preorders

For an idempotent residuated chain, set A" = {a € A: 1< a} and
A-={aeA:a<1}. Then (A C,A" A", 1,%)is an enhanced
monoidal preorder. In fact:

Idempotent residuated chains are definitionally-equivalent to
enhanced monoidal preorders.

We will sketch the inverse of the correspondence: Building
idempotent residuated chains from enhanced monoidal preorders.
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From enhanced monoidal preorders to residuated chains

Given an enhanced monoidal preorder (P,C, P™, P~ 1,%), define
the ordered algebra A with underlying set A = P, with order given
by:

x<yiff(x,y€e P~ and xC y)or(x,y € P"and y C x) or
(xe P~ and y € PT)

with inverses by x! = x" = x*, if x is a C-conical element
(C-comparable to every element), and for a € P* and b € P~

Q@ o' =b, a" = a*, b = b*, b’ = a, if a, b are mutually
comparable and
Q@ al=23% a"=b bl =a, b = b* if a, b are incomparable
This gives an idempotent Galois connection that can be converted
into an idempotent residuated chain.
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An application: Amalgamation

Intended application of all of this was to obtain the strong
amalgamation property for semilinear residuated lattices.

A span in a class K of algebras is a 5-tuple (A, B, C, fg, fc), where
A.B,Ce K and fg: A — B and fc: A — C are embeddings.
@ KC has the amalgamation property if for every span
(A,B,C, fg, fc) in K there exists a triple (D, gg, gc) so that
gg: B — D and gc: C — D are embdeddings and
gafs = gcfc (i.e., the corresponding diagram commutes).
@ /C has the strong amalgamation property if the amalgam
above can be taken so that the intersection of the images of
g and gc is exactly the image of A.

19/26



Amalgamation: Failure

It turns out that the amalgamation property fails for idempotent
residuated chains (and even semilinear idempotent RLs):

a3< b5=1 a a < (b3) =11
by =a3 by = a5 & a3 b;
by=a; 1 (b2)" = by = (a3)"
b b
b;
by
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*~involutivity

Recall that x* = x’ A x". An idempotent residuated chain is called
*~involutive if it satisfies x** = x.

The class of *-involutive idempotent residuated chains has the
strong amalgamation property.

Proof idea: Rests on a characterization of the enhanced monoidal
preorders of *-involutive idempotent residuated chains. Roughly
the amalgam of A and B is constructed as an ordinal sum
(corresponding to a nested sum) of their enhanced monoidal
preorders.
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Lifting amalgamation

Using some general universal algebraic results, we can lift the
amalgamation property from the class of *-involutive residuated
chains to the variety they generate:

The variety of *-involutive semilinear idempotent residuated
lattices has the strong amalgamation property.

To do this, we need to show that the class has the congruence
extension property.
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The congruence extension property

An algebra A has the congruence extension property if whenever
B < A and O is a congruence on B, there exists a congruence W
on A such that ©@ = W N A2,

The variety of semilinear idempotent residuated lattices has the
congruence extension property.

Proof (sketch): Key idea is that congruences of residuated
lattices are given by filters that are closed under iterated
conjugates, i.e., compositions of maps of the form a — (xa)/x A 1
and a — (x\ax) A 1. One can use the structural results we've
given to show that semilinear idempotent residuated lattices satisfy
y Ay"™ Ay™ < xy/x,x\yx, and this allows us to eliminate iterated
conjugates.
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Thank you!

Thank you!
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