Interpolation via Finitely Subdirectly Irreducible Algebras

Wesley Fussner

(joint work with George Metcalfe)

University of Bern, Switzerland

4th Workshop on Interpolation: From Proofs to Applications FLoC 2022 Haifa, Israel

11 August 2022

Metalogical properties and algebra

This talk is about practical algebraic tools to study metalogical properties. In particular, if \vdash is a deductive system we say:

- ⊢ has the deductive interpolation property if for all formulas φ, ψ such that φ ⊢ ψ, there exists a formula σ such that φ ⊢ σ, σ ⊢ ψ, and the variables of σ are among those appearing in both of φ and ψ.
- \vdash has a local deduction theorem if there exists a family $\{d_j(p,q): j \in J\}$ of sets of formulas $d_j(p,q)$ in at most two variables such that for every set of formula $\Gamma \cup \{\varphi, \psi\}$ we have

$$\Gamma, \varphi \vdash \psi \iff \Gamma \vdash d_j(\varphi, \psi)$$
 for some $j \in J$.

(Think $d_j(\varphi, \psi) = \{\varphi \to \psi\}$).

When \vdash is algebraizable, these properties correspond to the the amalgamation property and the the congruence extension property.

The breadth of application

- Most everyday logics are algebraizable (see Blok-Pigozzi 1989):
 - Intuitionistic logic, normal modal logics, multiplicative-additive linear logic, relevance logics above R, Łukasiewicz logic, t-norm based fuzzy logics, classical first-order logic, ...
- This study applies in a language-agnostic way (may not have →, can't express Craig interpolation).
 - Consider fragments of well-known logics.
- Applies even when there is no good proof theory.
 - Challenging extensions of Full Lambek calculus like GBL, Łukasiewicz, ...
- Main limitation is set by whether it is difficult to analyze the pertinent algebraic models.

Some basic definitions

- A variety is a class \mathcal{V} of algebras defined by equations, or equivalently, closed under homomorphic images, direct products, and subalgebras.
- An algebra A is called subdirectly irreducible if whenever A is isomorphic to a subdirect product of a set of algebras, it is isomorphic to one of these algebras. Equivalently, A is subdirectly irreducible if the least congruence
 Δ_A = {⟨a, a⟩ : a ∈ A} is completely meet-irreducible in the lattice of congruences Con A of A. We denote the subdirectly irreducibles of a variety V by V_{sl}.
- An algebra A is called finitely subdirectly irreducible if whenever A is isomorphic to a subdirect product of a non-empty, finite set of algebras, it is isomorphic to one of these algebras. Equivalently, A is finitely subdirectly irreducible if Δ_A is meet-irreducible in Con A. We denote the finitely subdirectly irreducibles of a variety V by V_{FSI}.

From SI algebras to FSI algebras

- Establishing that a variety ${\cal V}$ has some property by arguing on ${\cal V}_{\rm SI}$ is a common proof strategy in universal algebra.
- Theme of today's talk: One often obtains simpler, more elegant, and more useful formulations of transfer theorems (from \mathcal{V}_{FSI} to \mathcal{V}) when working with FSI algebras instead of SI algebras, especially for logically-relevant properties and varieties.
- One reason: Varieties corresponding to logics often have equationally definable principal meets, which implies $\mathcal{V}_{\rm FSI}$ is a universal class.
- Often obtain equivalent formulations of properties in terms of \mathcal{V}_{FSI} that do not exist for \mathcal{V}_{SI} .

An algebra **A** is congruence-distributive if Con **A** is a distributive lattice. **A** has the congruence extension property (or CEP) if for any subalgebra **A** of **B** and $\Theta \in \text{Con } \mathbf{A}$, there exists a $\Phi \in \text{Con } \mathbf{B}$ such that $\Phi \cap A^2 = \Theta$. A class of algebras \mathcal{K} has these properties if each $\mathbf{A} \in \mathcal{K}$ does.

Our first illustration of FSI algebras in action:

Theorem:

Let $\mathcal V$ be any congruence-distributive variety. Then $\mathcal V$ has the congruence extension property if and only if $\mathcal V_{\rm FSI}$ has the congruence extension property.

The previous theorem improves on the following similar results for SIs, which is also a corollary by noting that each member of $\mathcal{V}_{\rm FSI}$ embeds into an ultraproduct of members of $\mathcal{V}_{\rm SI}$:

Corollary (Davey 1977):

Let $\mathcal V$ be any congruence-distributive variety such that $\mathcal V_{si}$ is an elementary class. Then $\mathcal V$ has the congruence extension property if and only if $\mathcal V_{si}$ has the congruence extension property.

Major improvement is that $\mathcal{V}_{\rm SI}$ being an elementary class is a very strong hypothesis, and not needed for $\mathcal{V}_{\rm FSI}.$

Often the CEP is reformulated using commutative diagrams.

Definition:

Let \mathcal{K} be a class of similar algebras. A span in \mathcal{K} is a 5-tuple $\langle \mathbf{A}, \mathbf{B}, \mathbf{C}, \varphi_B, \varphi_C \rangle$ consisting of $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and homomorphisms $\varphi_B \colon \mathbf{A} \to \mathbf{B}, \varphi_C \colon \mathbf{A} \to \mathbf{C}$. A span is:

- injective if φ_B is an embedding.
- doubly injective if both φ_B and φ_C are embeddings.
- injective-surjective if φ_B is an embedding and φ_C is surjective.

A class \mathcal{K} of similar algebras has the extension property (or EP) if for any injective-surjective span $\langle \mathbf{A}, \mathbf{B}, \mathbf{C}, \varphi_B, \varphi_C \rangle$ in \mathcal{K} , there exist a $\mathbf{D} \in \mathcal{K}$, a homomorphism $\psi_B \colon \mathbf{B} \to \mathbf{D}$, and an embedding $\psi_C \colon \mathbf{C} \to \mathbf{D}$ such that $\psi_B \varphi_B = \psi_C \varphi_C$.

Proposition (Bacsich 1972):

A variety \mathcal{V} has the CEP if and only if it has the EP.

Note: This need not be true for other classes of algebras.

The extension property

Our previous characterization of the CEP in terms of \mathcal{V}_{FSI} does not make any special demands on \mathcal{V}_{FSI} itself, but with additional hypotheses we can say more:

Theorem:

Let \mathcal{V} be a congruence-distributive variety such that \mathcal{V}_{FSI} is closed under subalgebras. The following are equivalent:

- $\textcircled{0} \quad \mathcal{V} \text{ has the congruence extension property.}$
- **2** \mathcal{V} has the extension property.
- ${\small \textcircled{0}} \hspace{0.1 in} \mathcal{V}_{_{\mathsf{FSI}}} \hspace{0.1 in} \text{has the congruence extension property.}$
- \mathcal{V}_{FSI} has the extension property.

Let $\mathcal{K}, \mathcal{K}'$ be classes of algebras in a common language.

- An amalgam in \mathcal{K}' of a doubly injective span $\langle \mathbf{A}, \mathbf{B}, \mathbf{C}, \varphi_B, \varphi_C \rangle$ in \mathcal{K} is a triple $\langle \mathbf{D}, \psi_B, \psi_C \rangle$ where $\mathbf{D} \in \mathcal{K}'$ and ψ_B, ψ_C are embeddings of \mathbf{B} and \mathbf{C} into \mathbf{D} , respectively, such that $\psi_B \varphi_B = \psi_C \varphi_C$.
- We say \mathcal{K} has the amalgamation property (or AP) if every doubly injective span in \mathcal{K} has an amalgam in \mathcal{K}
- We say K has the one-sided amalgamation property (or 1AP) if for any doubly injective span (A, B, C, φ_B, φ_C) in K, there exist a D ∈ K, a homomorphism ψ_B: B → D, and an embedding ψ_C: C → D such that ψ_Bφ_B = ψ_Cφ_C.

The AP and 1AP

Theorem:

Let \mathcal{V} be a variety with the congruence extension property such that \mathcal{V}_{FSI} is closed under subalgebras. The following are equivalent:

- $\textcircled{O} \ \mathcal{V} \text{ has the amalgamation property.}$
- ${\color{black} {\it 0} {\it 0}}$ ${\color{black} {\cal V}}$ has the one-sided amalgamation property.
- $\textcircled{O} \mathcal{V}_{\text{FSI}} \text{ has the one-sided amalgamation property.}$

A variety \mathcal{V} is finitely generated if it is generated by a finite set of finite algebras of finite signature. A variety is residually small if there is a cardinal bound on the size of its subdirectly irreducible members.

By applying Jónsson's Lemma and the results given previously, we obtain the following decidability result.

Theorem:

Let $\mathcal V$ be a finitely generated congruence-distributive variety such that $\mathcal V_{\text{FSI}}$ is closed under subalgebras. There exist effective algorithms to decide if $\mathcal V$ has the congruence extension property and amalgamation property.

Step 2: Check if each member of $\mathcal{V}_{\text{FSI}}^*$ has the congruence extension property to see if \mathcal{V} has the CEP.

Step 3: It is known that if a residually small, congruence-distributive variety has the AP, then it has the CEP. Since \mathcal{V} is residually small, if \mathcal{V} does not have the CEP in Step 2, then \mathcal{V} does not have the AP.

Step 4: If otherwise \mathcal{V} has the CEP, it can be decided if \mathcal{V} has the AP by checking if \mathcal{V}_{FSL} has the 1AP.

Kleene lattices are generated by a single 3-element algebra: A totally order lattice $\{-1,0,1\}$ with -1<0<1 with the binary operations of \wedge for minimum and \vee for maximum, and negation \neg given by the additive inversion, plus -1 and 1 named by constant symbols. Call this algebra L. The variety $\mathcal V$ of Kleene lattices is the variety generated by L.

Step 1: Up to isomorphism only two non-trivial finitely subdirectly irreducibles: L and the 2-element Boolean algebra $B(=\{-1,1\})$, so $\mathcal{V}_{FSI}^* = \{L, B\}$.

Step 2: Easy to verify that both **L** and **B** have the CEP by directly computing congruences and subalgebras.

Step 3: Since \mathcal{V} has the CEP we go on to Step 4.

Step 4: Since **L** does not embed in **B**, there are just three doubly-injective spans to check, and the only non-trivial one (the one where **B** embeds as a common subalgebra of **L** and a **B**). Each of these can be completed, so \mathcal{V} has the 1AP.

We conclude that \mathcal{V} has the amalgamation property.

Conclusion

- We have only run through a toy example, but it reconstructs a result of Cignoli (1975) and later Cornish and Fowler (1977).
- In the paper, we apply these results to classify whether certain extensions of Hájek's basic fuzzy logic have deductive interpolation/amalgamation.
- Other applications are to extensions of the Full Lambek calculus by the contraction and mingle rules (F.-Galatos 2022+).
- Many other probable use cases (modal logics?)

Thank you!

For more information, see the paper at arXiv:2205.05148